4. 数据质量是根源
要使模型结构稳定有效,首先要保证数据质量,反复检验问卷的信度。
a. 不同时间的一致性。
在设计问卷时,可以将同样的问题对同一个人重复测试,如果这两道题得到的答案是不一致的,相关系数(Pearson r)小于0.7,那么这份问卷的稳定信度就值得考量。
假如问卷样本足够大,可以一分为二(每一个样本也要保证足够样本量),分别建立两个模型;通过对比两个模型中参数的差异,便可以检验该模型的稳定性和适用性。如果两者差异太大,就说明模型本身是有问题的。

b. 不同形式的一致性
用内容等效但表达方式不同的两份问卷调查,检测两者的等效信度,比如Gamma系数。
c. 内在一致性
问卷中相关的问题为同样的目标服务,他们在逻辑一致,也就是同质的。首先要测量每个测度项与总体的相关性(item-total correlation),然后再测量同一变量下相关问题间的同质性,而对于不同的提问方式选择对应的方法:比如,对于李克特量表方法,就用Chronbach系数检验;在基础研究中,信度至少应达到 0.80 才可接受,在探索性研究中,0.70 可接受,0.70-0.98 为高信度,小于0.35 为低信度。对于是非题则采用kuder-Richardson系数检验。在进行内在一致性检验时,要看题目选项是否反序,如果两道题都是问“对该产品是否满意”,一道7代表满意,1代表不满意;另一道1代表满意,7代表不满意,这样就会影响信度。遇到这种情况要提前人为调整过来。
5. 看得更远一点
问卷结论不仅要解决当前的问题和需求,还有具有一定的预测作用,市场是变化的,当前的目标用户不一定就是未来的(或者下一个版本的)目标用户,比如目标用户的收入可能有增加的趋势,某一平台的使用率在快速提高,当前的满意度模型可能在一个月之后就不适用了(比如新功能点的出现)。

假设我们要对QQ影音进行满意度调查,现在建立了一个满意度模型,但若下个月QQ影音中多了一个重要的功能,对整个满意度的提升产生了很大作用,那么,模型中各项的路径系数会不会产生变化?该模型在下个月可能就不适用了,造成的后果就是当前的满意度值与下个月的满意度值没有可比性了,很多工作也就白费了。所以,诸如满意度模型这样的研究,是需要反复调查,长期对该满意度模型进行监控和修正,以求得到最稳定的模型,就可以让模型会具有很预测和比对作用啦。
出处:Tencent CDC Blog
责任编辑:bluehearts
上一页 浅谈用户研究中的信度与效度 [3] 下一页 浅谈用户研究中的信度与效度 [5]
|